Intestine-Targeted DGAT1 Inhibition Improves Obesity and Insulin Resistance without Skin Aberrations in Mice
نویسندگان
چکیده
OBJECTIVE Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. DESIGN AND METHODS We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500), reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO) mice. RESULTS The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. CONCLUSIONS Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.
منابع مشابه
Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in mammalian triglyceride synthesis. DGAT1-deficient mice are resistant to diet-induced obesity through a mechanism involving increased energy expenditure. Here we show that these mice have decreased levels of tissue triglycerides, as well as increased sensitivity to insulin an...
متن کاملEnhancing energy and glucose metabolism by disrupting triglyceride synthesis: Lessons from mice lacking DGAT1
Although the ability to make triglycerides is essential for normal physiology, excess accumulation of triglycerides results in obesity and is associated with insulin resistance. Inhibition of triglyceride synthesis, therefore, may represent a feasible strategy for the treatment of obesity and type 2 diabetes. Acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes that cata...
متن کاملEffects of DGAT1 deficiency on energy and glucose metabolism are independent of adiponectin.
Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), an enzyme that catalyzes the terminal step in triacylglycerol synthesis, have enhanced insulin sensitivity and are protected from obesity, a result of increased energy expenditure. In these mice, factors derived from white adipose tissue (WAT) contribute to the systemic changes in metabolism. One such factor, adiponectin, increases...
متن کاملDissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a:diacylglycerol acyltransferase 1 in white adipose tissue.
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes known to catalyze the final step in mammalian triglyceride synthesis. Mice deficient in DGAT1 are resistant to obesity and have enhanced insulin sensitivity. To understand better the relationship between triglyceride synthesis and energy and glucose metabolism, we generated transgenic (aP2-Dgat1) mice in which e...
متن کاملIncreased insulin and leptin sensitivity in mice lacking acyl CoA : diacylglycerol acyltransferase 1 Hubert
Because obesity results from an imbalance between energy input and output, with most of the excess calories stored as triglycerides (or triacylglycerols), inhibition of triglyceride synthesis may prevent or reverse obesity (1). One of the key enzymes in triglyceride synthesis is acyl coenzyme A:diacylglycerol acyltransferase (acyl CoA:diacylglycerol acyltransferase, or DGAT), which catalyzes th...
متن کامل